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Development of synthetic methods for optically active and highly
functionalized silyl enol ethers are in great demand in organic
synthesis.1 Since the optically activeâ-hydroxy silyl enol ethers
are valuable as chiral building blocks for many bioactive com-
pounds,2 an asymmetric carbonyl-ene reaction with silyl enol ether
is one of the most efficient synthetic methods. The problems
associated in this reaction, however, are the decomposition of silyl
enol ethers under the Lewis acid conditions and competition with
the Mukaiyama aldol reaction.3,4 There are only two types of
asymmetric carbonyl-ene reactions using silyl enol ether as an ene
substrate. We have reported a BINOL-derivated chiral Ti complex-
catalyzed asymmetric glyoxylate-ene reaction of trimethylsilyl enol
ether to give chiralâ-hydroxy silyl enol ether (ene-type) products
in high yield and enantioselectivity instead of secondaryâ-hydroxy
ketone (Mukaiyama aldol-type product).5 Recently, Jacobsen has
also reported a chiral Cr complex-catalyzed ene reaction between
aldehyde and trimethylsilyl enol ether to give the ene-type product
in an excellent yield with enantioselectivity.6 These reactions
produce silyl enol ethers, however, with the chiral tertiary carbon
centers. There is so far no report on silyl enol ether to afford
quaternary carbon centers.7 Herein we report a chiral dicationic Pd
complex-catalyzed asymmetric ketoester-ene reaction of silyl enol
ether, which constructs an optically activeâ-hydroxy silyl enol ether
with a quaternary carbon center.8-10

The asymmetric ketoester-ene reaction was first investigated with
acetone silyl enol ether1 bearing TIPS group and ethyl pyruvate
2a (Table 1). The active dicationic Pd catalyst as Lewis acid was
in situ generated from 5 mol % of chiral PP*-PdCl2 complex and
11 mol % of AgSbF6 in dichloromethane.8a (S)-BINAP-PdCl2
bearingC2 symmetric binaphthyl-backbone gave ene-type product
3a in 77% yield and 92% ee without aldol-type product (entries
1-3 vs 4).11 While the use of (S)-tol-BINAP increased the
enantioselectivity up to 95% ee, the yield was decreased by
decomposition of1 (entry 5). The sterically more demanding (S)-
xylyl-BINAP-PdCl2 gave lower yield and enantioselectivity (entry
6). (S)-SEGPHOS12 was found to be the most effective to give3a
with 93% ee in 96% yield without decomposition of1 (entry 8).13

SeveralSigroups in1 were further examined by (S)-SEGPHOS-
PdCl2 under the same conditions (Scheme 1). The less hindered
TMS enol ether yielded only aldol product4a bearing the same
absolute configuration (46%, 80% ee).14 The use of TBDMS
decreased the enatioselectivity of the ene product. In addition, the
sterically more hindered TBDPS gave ene product3a in higher
enantioselectivity (96% ee), but the reactivity of TBDPS ether
significantly decreased.

The reactions of various ketoester substrates2b-f and TIPS enol
ether1 were examined by (S)-SEGPHOS-PdCl2 under the optimized
conditions (Table 2). Methyl pyruvate2b produced ene product
3b quantitatively (85% ee) (entry 2). The absolute configuration
of ene product3c from benzyl pyruvate2c was determined to be
R (entry 3).15 The substrate2d,e bearing CF3 andâ-phenyl ethyl
groups gave high enantioselectivity (88 and 87% ee, respectively)
(entries 4, 5). Benzoylformate2f yielded ene product3f in higher
enantioselectivity (98% ee) (entry 6). The construction of quaternary

carbon center was thus succeeded with high enantioselectivity from
various ketoester substrates. Significantly, less reactive diketone
2g,h could be employed in the reaction. Dimethyl diketone2g
afforded the corresponding desymmetrized16 product in good yield
with high enantioselectivity (entry 7). The more significant result
was obtained with unsymmetrical diketone2h, leading to the
complete regioselectivity and enantioselsectivity (entry 8).

With these successful results in terms of catalyst activity and
enantioselectivity, we attempted to decrease the catalyst loading
(Scheme 2). Ene product3a was quantitively obtained in 92% ee
with the less catalyst loading (0.05 mol %). Even with the smallest

Table 1. Enantioselective Ketoester-ene Reaction with Silyl Enol
Ether 1 and Ethyl Pyruvate 2a by Chiral Dication Pd Catalysts

entry PP*-ligand yield (%)a ee (%)b

1 (R,R)-DUPHOS 68 5c

2 (S,S)-BDPP 52 75c

3 (S)-QUINAP 9 76c

4 (S)-BINAP 77 92
5 (S)-tol-BINAP 62 95
6 (S)-xylyl-BINAP 47 61
7 (S)-SYNPHOS 79 92
8 (S)-SEGPHOS 96 93

a Isolated yield.b Enantiopurity was determinded by HPLC analysis after
desilylation toâ-hydroxyketone4a. c Opposite configuration.

Scheme 1. Silyl Effects on SEGPHOS-Pd2+-Catalyzed
Ketoester-ene Reaction

a Reaction time was 24 h.
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substrate/catalyst ratio, namely S/C 10,000 at 0°C, the high yield
and enantioselectivity could be obtained.

Next, our attention was focused on heterocombination of ene
reaction sequence17 with 3a (92% eeR) by using chiral BINOL-Ti
catalyst (Scheme 3).18 In the presence of 10 mol % (S)-BINOL/
Ti(OiPr)4, the reaction with ethyl glyoxylate5 afforded the mixture
of ene,18 Friedel-Crafts,19 and aldol products.20 However, diol (R)/
(S)-6 bearing both quaternary and tertiary carbon centers was ob-
tained in 67% yield and>99% ee (92% diastereoselectivity) after
desilylation by TBAF. In contrast, the treatment with (R)-BINOL-
Ti catalyst led to the diol (R)/(R)-6 in 61% yield and 97% ee (dr)
91/9).

In summary, we have succeeded in dicationic SEGPHOS-Pd
complex-catalyzed ketoester-ene reaction, which constructs highly
optically activeâ-hydroxy silyl enol ether with quaternary carbon
center. We have also succeeded in lowering the catalyst loading
up to 0.01 mol % without significant decrease in the yield and
enantioselectivity. This low catalyst loading will open the door to
industrial applications of the present chiral Lewis acid catalysis.
Further investigations on engineered Lewis acid catalysis of tandem
reactions are currently in progress.
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Table 2. Enantioselective Ene Reaction with Various Enophiles

a Reaction time was 18 h.b Isolated yield.c Enantiopurity was determined
by HPLC analysis after desilylation toâ-hydroxyketone4. d Enantiopurity
was determined by GC analysis after desilylation toâ-hydroxyketone4.

Scheme 2. Low Catalyst Loading of SEGPHOS-Pd Complex

Scheme 3. Hetero Two-Directional Reaction by BINOL/Ti(OiPr)4
Catalyst
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